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A Microstrip Line on a Chiral Substrate
Michael S. Kluskens and Edward H. Newman

Abstract —Right and left circular vector potentials are developed and
used in a spectral-domain solution for a microstrip transmission line on
a chiral substrate. These vector potentials have properties similar to
those of the usual magnetic and electric vector potentials, except that
they result in circular rather than linearly polarized fields, thereby
simplifying field expansions in chiral media. The chiral microstrip line
does not have bifurcated modes like other chiral guided wave structures;
however, the chiral substrate causes a significant asymmetry in both the
fields and currents.

I. INTRODUCTION

This paper presents- a  spectral-domain Galerkin moment.
method (MM) solution for a microstrip transmission line on a
chiral substrate. A chiral medium is a form of artificial dielectric
consisting of chiral objects randomly embedded in a dielectric or
other medium [1]. At optical frequencies, the chiral objects are
moleculés and the medium is called an isotropic optically active
medium. At microwave frequencies, early research used con-

ducting helices as a scale model for optical activity [2]. From this .

and later work, the constitutive relationships for chiral media
have been shown to be the same as those for isotropic optically
active media; therefore, the same notation is used [3, sec. 8.3].

A chiral medium is distinguished from other media in that
right and left circularly polarized waves propagate through it
with different phase velocities, even though it is a reciprocal and
isotropic medium. For most chiral guided wave structures this
property results in bifurcated modes [4]-[6], i.e., pairs of modes
with the same cutoff frequency. The chiral microstrip line does
not have bifurcated modes, and thus the dispersion curves are
single valued. The primary effect of the chiral substrate is to
generate asymmetric longitudinal and symmetric transverse
fields. This effect could significantly. alter the properties of
microwave devices constructed on a chiral substrate.
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Fig. 1. Microstrip line on a grounded chiral substrate.

II. TurorY

The constitutive relationships for a chiral medium can be
written as
D=¢ E— jué H (1)
B=uH+jué E (2)
where €, = € + ué2, u is the permeability, € is the permittivity,
and the pseudoscalar &, is the chirality- admittance of the
medium (/).
Following the techniques used in [7], [8], the right (R) and left
(L) circular vector potentials are defined as

R=ay(kg) €)
L=ay(k.) NG
where 4 is an arbitrary unit vector and (k) is a solution of the

scalar wave equation V2y(k)+ k%p(k)=0. The right and left
circularly polarized electric fields are formed using

i 1
ER=V><(R+——V><R) (5
kg
1
E, =VX|L-—VXL (6)
kL N . !
where the wave numbers k and k; are given by
ke\ ,
R} =wy/pe; Twpf,. (N
L
The corresponding magnetic fields are given by
Hp i E
()52 %) ©
L Me L

where 7, = f /€, is the chiral wave impedance. The right (or
left) circular vector potential component R, (or L) produces a
right (or left) circular to y field RCy (or LCY) just as the
magnetic vector potential component A produces a transw,rse
magnetic to y field TMy. ‘
The microstrip line is shown in Fig. 1, where the substrate has
parameters (u,€,£,) and thickness T. The microstrip line is W
wide, infinitely thin, and perfectly conducting with a current
distribution of J(x)e —ik:Z The region 'y > T is free space, with

parameters (uq,€,) and wave number k= wype€,. In this

‘region the fields may be expanded as the sum of TM, field and

a TEy field using

A _i * A4 — ik yx vk, 2)
(F)_Z‘n'f-oo(ﬁ)e ks

where k2= k2 + k2 — kg.

In the substrate, the fields are expanded in terms of right and
left circular vector potentials. Individually, right or left circularly
polarized fields can not satisfy the boundary condition of zero

®)
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tangential electric field on the ground plane at y = T. However,
this boundary condition can be satisfied by a quasi-TMy field
formed as the sum of a RCy field and a LC, field generated by
the circular vector potentials [8}:

Ry m Voo . cosky w¥\ e
I Ry FHED e (10
(LY,M) 2 f_wQM( —cosk, ;¥ € . (10)

where k2 p=k2+kZ—k% and k2, =k} +k?—ki. The re-
sulting field is TM, if £,=0; hence the name quasi-TMy.
Similarly, a quasi-TE, field can be formed using

k

R

. sink, py
Ry y o= s v, R
(LY,E) - wa_mQE kL

y.L

e*l(kxerkz:) dk

. (1)

sink, ;¥

The four unknown spectral functions A4, F, 0,,, and O, are
determined by enforcing the boundary conditions at y =T {8].
The fields E, and E, at the interface y =T are presented
below in terms of the even and odd components of the Fourier
transforms of these fields generated by £ and £ polarized
traveling wave line sources at x =0, y=T:

. 1

k we J 1
Elry = —{{ K22 + k22| (1 - §) - — (K2U + k2V)
’ A L WHo ky Me

(12)
. 1] wey ky ]
L 2 2
Ezj:e_x (kxT kz )(1 S)——“(sz—l'k U)
(13)
y . kk, [ k, we j ]
El =Fl =— 2| 2 )1 _§)+ —(V-U
5= Bl =2 [(% (DLl
(14)
. - 2k k.
E){Xo__EzJ:(;:] - (15)
’ ‘ A
. . k2 —k?
LBl =Ef. =] ~G (16)
» > ncA
where
A=(k§+k§){[ic(1+5)—fﬂ(l—S)]
Mo
k2 0 ky €.
+j|——U+-——V 17
[ky 1 kZ Ko ( )

kg k k k :
+ y,L ¥, R L . . T
G Z(ky_R ke ky,L)Smky‘RTsmk-V’L (18)
S=cosk, gTcosk, ; T—G* (19)
kyr .
U= sink, pTcosk, ;T
R
+ 2L in k,  Teosk, gT (20)
L
R .
V=——sink, gTcosk, ;T
»R
kp o
+-——sink, ;Tcosk, oT (21)

y,.L

with k,=wy/ue, =(kg+k;)/2. For example, the E, field
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generated by the surface current J,(x) is given by

1 o -
EL() =5 [ [EL(k)+ Bl (k)
T (ke Rex kD gl o (22)
In a conventional achiral microstrip line EJx,, Ef,, El,, and

E,{’e are zero, causing J.(x) and J(x) to be even and odd
functions of x, respectively. However, this is not true for a chiral
microstrip line, thereby requiring a set of even and odd basis
functions.

1II. MoMENT METHOD SOLUTION

The J, and J, currents for the MM solution are expanded as

J (x) = Z X, 1 n(x) (23)
(0= E L) (24)
n=0
where I, , and I, , are the unknown coefficients. The basis

are Chebyshev polynomials weighted by
{13}

functions J, , and J,

the edge conditions f 9]-
4 UQ2x/W
G.Cx/W) = (e WY

JelX) = — == (25)

Jz,,,(x)=;VTn(2x/W>/\/1—(2x/W)2 (26)

where T,(x) and U(x) are Chebyshev polynomials of the first
and second kinds, respectively. The Fourier transforms of these
basis functions are [14, sec. 6.671]:

. o Inei (KW /2)
Jen(ky)=2j W (27)

I (k) =" (k W /2) (28)
where J,(x) is an nth-order Bessel function. The MM can then
be applied to enforce the boundary condition of zero tangential
electric field on the microstrip line. In block matrix form, the
MM equation is

ZXX ZXZ IX O 2
sz ZZZ IZ - 0 ( 9)
where [, =[1, - Ix,NY]T and I, =[IZ.0...I:.NZ]T.
In the xz block

sz(0,0) sz(O,Nz)

Z,,= : - : (30)
ZXZ(NX,O) sz(NY,N:)

sz(m,n) == f_wE;Z(kx)fz,n(kx)J;,m( - kx) dkx . (31)

Impedance elements in the remaining blocks are given similarly.

The propagation constants of the modes are found as the
roots of the determinant of the impedance matrix given in (29).
For a given propagation constant the ficlds in any region and
the current distribution may be found using the equations pre-
sented in the previous section.

IV. NuMmERIcAL RESULTS

This section presents numerical results demonstrating the
accuracy of the MM solution, and some effects of chirality on a
microstrip transmission line. All currents are normalized to
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Chiral Microstrip Line
€=4, Ue=1, T=3mm, W=3mm
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Fig. 2. Fields and currents at y =T for a chiral microstrip solved using
ten J, modes and ten J, modes.

Chiral Microstrip Line
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Fig. 3. Normalized guide wavelength (A o/ Ag) versus frequency for the
fundamental mode of chiral and achiral microstrip lines, for a range of
chiral parameters in Siemens.

I, =1, since the microstrip current can only be found to within
a constant. In the figures the real part of the current and fields
is shown as a solid line, and the imaginary part as a dashed line.

Fig. 2 shows the electric fields and currents at the interface
y =T for a MM solution using ten longitudinal and ten trans-
verse basis functions. The left-hand graphs show that the fields
satisfy the boundary condition of zero tangential electric field on
the microstrip line. The corresponding currents are shown in the
right-hand graphs. The even transverse current component,
which occurs solely because of the chirality, is significantly
larger than the odd transverse current component.

The dispersion curve shown in Fig. 3 shows the normalized
guide wavelength (A, /) for the fundamental mode of a chiral
microstrip line, for a range of chiral parameters. The case £, =0
corresponds to an achiral line. Fig. 3 shows that the propagation
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constant is not significantly affected unless the chiral parameter
is a significant percentage of the maximum value set in [15] of
&, max = V€ /1 , Which in this case is 0.0053 S.
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Time-Domain Scattering Parameters of an
Exponential Transmission Line

Ching-Wen Hsue

Abstract —The scattering parameters of an exponential line are stud-
ied in detail both in frequency and time domains. By taking the causality
condition into consideration, we cast the time domain scattering param-
eters in a rapid-convergence power series. Each term of the power series
represents a signal component generated by the exponential line when
the signal travels a round trip. o i —
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